Stoffverteilungsplan Mathematik – Einführungsjahr (Ej)

Hinweis: Grundlage sind die Fachanforderungen Mathematik des Landes Schleswig-Holstein. Die ausführlichen Inhalte stehen in den Fachanforderungen. Im Bereich der Medienkompetenz wird u.a. der sichere Umgang mit dem wissenschaftlichen Taschenrechner (TR) eingeübt.

Stand: 13.06.2025

1. Halbjahr: Analysis

Themenbereich	Inhalte
Funktionale Grundlagen	Definitions- und Wertemenge, Intervall, Stelle, Funktionswert, Punkt
Differenzialrechnung	Mittlere Änderungsrate, Differenzenquotient, Sekantensteigung / mittlere Steigung (auch grafisch, z. B. GeoGebra), lokale Änderungsrate, Grenzwerte von Funktionswertfolgen reeller Funktionen, Limes (intuitiv), Differenzialquotient, Tangentensteigung, Stetigkeit, Differenzierbarkeit, grafisches Differenzieren, Ableitungen
	Ableitungsfunktionen, Funktionsklassen: ganzrationale Funktionen, Wurzel- & Umkehrfunktionen,
	$f(x) = \frac{1}{x}, f(x) = x^q \ (q \in \mathbb{Q}), \text{ Sinus- & Kosinus funktion}$
	Verknüpfungen & Verkettungen von Funktionen
	Ableitungsregeln: Summen-, Faktor-, Potenz-, Produkt-, Kettenregel
	Graphische Transformationen in x- bzw. y-Richtung bzw. an der x- bzw. y-Achse: Verschiebung, Streckung, Spiegelung
	Symmetrien: Punkt-, Achsen-, beliebige Symmetrien, gerade/ungerade Funktionen
	Monotonie
Extrempunkte	Newton-Verfahren, Hoch- & Tiefpunkte, notwendige & hinreichende Bedingungen, lokale & globale Extrema,
	Randextrema, Optimierungsprobleme (Extremalprobleme)
Wendepunkte	Wendepunkte als Punkte des Graphen mit lokal extremer Steigung, Links- und Rechtskrümmung, Änderung der
	Krümmungsrichtung des Graphen im Wendepunkt, Wendetangente, Sattelpunkt, notwendige & hinreichende
	Bedingungen

2. Halbjahr (1. Teil): Analytische Geometrie

Themenbereich	Inhalte
Vektoren ($\mathbb{R}^2 \& \mathbb{R}^3$)	Punkte, Strecken, Körper, Vektoren als Verschiebungen, Vektoren im \mathbb{R}^2 & \mathbb{R}^3 , Betrag, Ortsvektor, Nullvektor,
	Gegenvektor, Addition, Multiplikation von Vektoren mit Skalaren, Vektorgleichungen, Linearkombination, lineare Abhängigkeit & Unabhängigkeit
Geraden &	Geradengleichung (Parameterform), Lagebeziehungen von Geraden, Gleichungssysteme (auch mit TR), Einsetzungs-,
Gleichungssysteme	Additionsverfahren (Gauß-Algorithmus), über- & unterbestimmte Gleichungssysteme, Koeffizientenmatrix

2. Halbjahr (2. Teil): Stochastik

Themenbereich	Inhalte
Grundlagen der Stochastik	Zufallsexperiment, Ergebnis, Ergebnismenge, Laplace-Experiment, Ereignis, Ereignismenge, Gegenereignis,
	Mengenoperationen (Vereinigung, Schnitt), relative Häufigkeit, Wahrscheinlichkeit, Rechenregeln für
	Wahrscheinlichkeiten (Axiome von Kolmogorov), Median, Mittelwert, Baumdiagramm (normal & invers), Vierfeldertafel,
	Simulation mit Tabellenkalkulation (Zufallszahlen, Auswertung), Ziehen mit/ohne Zurücklegen
Bedingte Wahrscheinlichkeit	Bedingte Wahrscheinlichkeit, stochastische Unabhängigkeit

Weitere Hinweise zum Unterricht im Einführungsjahr (Ej)

Vorbemerkung:

Der Unterricht bereitet auf die Qualifikationsphase vor. Es werden Aufgaben auf grundlegendem und erhöhtem Niveau bearbeitet. Die Schülerinnen und Schüler entscheiden sich während des Einführungsjahres für das grundlegende oder erhöhte Niveau in der Qualifikationsphase.

Anzahl der Unterrichtsstunden:

3 Stunden pro Woche, und zwar pro Woche ein Block mit 90 Minuten und jede zweite Woche ein weiterer Block mit 90 Minuten.

Verwendetes Lehrbuch:

Elemente der Mathematik, Einführungsphase, Schleswig-Holstein. Schroedel Verlag

Anzahl der Leistungsnachweise:

- Pro Halbjahr wird eine 90 Minuten lange Klausur geschrieben.
- Im gesamten Schuljahr wird ein weiterer alternativer Leistungsnachweis erbracht.
- Die Klausuren können einen hilfsmittelfreien Teil (HMF) enthalten.

Hilfsmittel:

- Die benötigten, erweiterten Funktionen des TR werden thematisiert.
- Es darf nur das offizielle Formeldokument des IQB verwendet werden.

Bezug zum Methoden- und Mediencurriculum des JRG:

- Vertiefung des Einsatzes des TR.
- Lernvideos analysieren, reflektieren, erstellen.